

LINEAR ACTUATORS HSA SERIES

© Copyright SERVOMECH

This catalogue contents are under publisher copyright and may not be reproduced unless permission is agreed. Every care has been taken to ensure the accuracy of the information contained in this catalogue, but no liability can be accepted for any errors or omissions.

The data shown in this catalog are in any case indicative and do not constitute any commitment. SERVOMECH reserves the right, at any time, to make changes at its discretion without notice.

1	/ PRODUCT DESCRIPTION
	 / Product overview
2	/ ACTUATORS HSA SERIES
	 2.1 / Technical data HSA Series
3	/ CONSTRUCTION FEATURES
	3.1/ Mounting attachments orientation133.2/ Kinematic scheme133.3/ Input shaft143.4/ Additional output shaft173.5/ Mounting position18
4	/ SIZING AND SELECTION
4	/ SIZING AND SELECTION194.1 / Input torque calculation194.2 / Ball screw sizing and service life204.3 / Push load limit244.4 / Critical speed limit25
4	/ SIZING AND SELECTION194.1 / Input torque calculation194.2 / Ball screw sizing and service life204.3 / Push load limit244.4 / Critical speed limit25/ LIMIT SENSORS27
4 5 6	/ SIZING AND SELECTION
4 5 6	/ SIZING AND SELECTION194.1 / Input torque calculation194.2 / Ball screw sizing and service life204.3 / Push load limit244.4 / Critical speed limit25/ LIMIT SENSORS27/ ADDITIONAL INFORMATION286.1 / Operating conditions286.2 / Relubrication and maintenance286.3 / Product identification296.4 / Delivery status of the product29

Servomech HSA electromechanical linear

actuators are high performance products with high precision ball screw drive, 100% internal production made by Servomech. The main advantages they offer are: high linear speeds associated with high loads always under a constant position control; precise and accurate control of position, speed and force; high efficiency with low energy consumption; reduced installation costs.

Ideal for **replacing hydraulic cylinders** in applications that require high linear speeds associated with high loads, precise and accurate control of position, speed and force, reduced energy consumption and lower installation costs.

Due to their construction and performance characteristics, these products fall within the range of **high-performance Servomech electromechanical cylinders**.

The high performance Servomech electromechanical cylinders best combine the demands of ever higher performance and **higher productivity** of plants with competitive industrial costs. They are available in various mounting configurations for full interchangeability even with existing hydraulic cylinders. The **field of use** are extremely varied but always attributable to applications that seek the highest levels of automation, productivity, efficiency and reliability.

In the design and construction of this range of linear actuators, **Servomech** takes advantage of its knowledge deriving from **thirty years of experience** in the field of electromechanical actuators, ball screws and application experience. The result is an innovative product, with distinctive characteristics and performance compared to other products on the market.

Five reasons to prefer Servomech electromechanical cylinders to traditional hydraulic and pneumatic cylinders. Find out more at **www.servomech.com**

GREATER ENERGY EFFICIENCY WITH REDUCED ENERGY CONSUMPTION

SERVOMECH products are **designed and manufactured inside our production factory in Anzola dell'Emilia (Bologna) - ITALY** using high technology and CNC machine tools.

All working processes inside SERVOMECH comply to its **Quality Management System**, developed according to **ISO 9001:2015** and certified by TÜV Italia. Check tests are carried out in-line during all manufacturing processes to monitor and adjust possible errors, obtaining a constant quality of the production with target zero scraps. Final control and functional checks are carried out to ensure high quality and reliability of the final product.

Each finished product is uniquely identified by the serial number on the product identification nameplate. For each finished product, SERVOMECH fills a specific final test sheet which is supplied to the customer within the shipment together with the product and certifies its conformity. The final test sheet also contains important information for the correct functioning of the product.

For more information, visit our website **www.servomech.com** or contact our sales office.

Product overview

The range of **high performance Servomech electromechanical linear actuators** is made upon **3 series**, differentiated by design and input drive.

HSA Series

High-speed linear actuators

- Rear hinged attachments
- Gleason bevel gear
- Ball screw drive
- 6 sizes, load capacity from 5 kN to 150 kN
- Ball screw from Ø 25 mm to Ø 80 mm
- Integrated anti-turn device system
- Lubrication with synthetic grease, lifelong lubricated gearbox
- Fast and easy re-lubrication system of the ball nut with "homing" position
- Linear speed up to 1 500 mm/s
- Standard stroke length up to 1 000 mm
- Proximity limit switches
- Incremental or absolute encoder for positioning control
- Prepared for IEC standard AC motors and brushless servomotors

ATL and BSA Series

Right angle design linear actuators

- Rear hinged attachments
- High precision worm gearbox, ZI involute profile
- Acme screw drive (ATL Series) and ball screw drive (BSA Series)
- Lubrication with synthetic grease
 lifelong lubricated gearbox, screw drive regreasable
- Standard stroke length up to 1 000 mm
- Proximity limit switches
- Incremental or absolute encoder for positioning control
- Prepared for IEC standard AC motors

ILA Series

In-line modular design linear actuators

- Housing mounting with pins
- In-line or right angle gearbox mounting
- Acme screw drive and ball screw drive
- Lubrication with synthetic grease
 lifelong lubricated gearbox, screw drive regreasable
- Standard stroke length up to 1.500 mm
- Proximity limit switches
- Incremental or absolute encoder for positioning control
- Prepared for IEC standard AC motors and brushless servomotors

- Barris

Size overview	

The electromechanical linear actuators HSA Series is available in **6 standard sizes**, to cover a wide range of performances.

SIZE	Push rod diameter [mm]	Outer tube diameter [mm]	Ball screw d ₀ × Ph [mm]
			25 × 5
HSA 10	Ø 35	Ø 20	25 × 10
			25 × 25
			32 × 5
	Ø 50	α oo	32 × 10
nja zj	Ø JU	W 22	32 × 20
			32 × 32
			40 × 5
	0 60	Ø 25	40 × 10
ПЭА 30	ØU	Ø 23	40 × 20
			40 x 40
			50 × 10
HSA 100	Ø 80	Ø 30	50 × 20
			50 × 40
			63 × 10
HGA 150	0	Ø 35	63 × 20
	0 90	0 00	63 × 30
			63 x 40
			80 × 10
464 200	Ø 115	Ø 60	80 × 16
	GIIØ	U DU	80 × 20
			80 × 40

SERVOMECH innovative solutions for high speed and long service life

Ball screw nut with axial recirculation of the balls for a greater load capacity

Re-lubrication system

of the nut with "homing" position for a fast and easy lubrication

Tapered roller bearingsback-to-back mounted for astiff support of the ball screw

Pushrod guide with axial sliding bush in anti-friction material for high-speed use **Breather** to compensate air flows and related pressure

2 / ACTUATORS HSA Series

2.1 / Technical data **HSA** Series

SIZE			HSA 10)	HSA 25				HSA 50			
Push rod diameter	[mm]		Ø35		Ø50			Ø60				
Outer tube diameter	[mm]		Ø90		Ø105			Ø120				
Front attachment diameter	[mm]		Ø20		Ø30			Ø35				
Rear attachment diameter	[mm]	Ø20			Ø30			Ø35				
Attachment for IEC standard motor (flange and hollow shaft)		71B5 80B5 - 80B14				80B5 - 90B5 -	80B14 90B14		90B5 100-112B5 100-112B14			
Max static load	[N]		10 000			20 (000		40 000			
Ball screw BS		BS1	BS2	BS3	BS1	BS2	BS3	BS4	BS1	BS2	BS3	BS4
Diameter × lead $d_0 \times P_b$	[mm]	25x5	25x10	25x25	32x5	32x10	32x20	32x32	40x5	40x10	40x20	40x40
Ball diameter D_w	[mm]	Ø3.175	Ø3.969	Ø3.175	Ø3.175	Ø6.350	Ø6.350	Ø6.350	Ø3.175	Ø6.350	Ø6.350	Ø6.350
Accuracy grade (1)			IT 7			IT	7			IT	7	
N° of circuits		4	3	2	6	4	3	2	6	4	3	2
N° of starts		1	1	2	1	1	1	2	1	1	1	2
Dynamic load C _a	[N]	14500	14800	13600	23000	37000	29800	35000	25300	42800	34300	40300
Static load C _{0a}	[N]	31500	28000	27300	60200	66800	53200	58100	76900	88000	70000	77100
Ratio u	R1		1			,				1		
Linear travel for 1 motor shaft rev.	[mm]	5	10	25	5	10	20	32	5	10	20	40
Max. force F _{max}	[N]	10000	8007	3313	20000	20000	18670	11800	40000	40000	40000	20589
Max. input torque T _{max}	[Nm]	10.9	16.5	16.5	22.4	41.3	73.3	73.3	44.2	82.1	158.1	159.1
Max. linear speed v _{max} [mm/s]	250	500	1250	233	466	933	1493	188	375	750	1500
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	2800	2800	2800	2800	2250	2250	2250	2250
Ratio u	R1.5		1.5			1.	.5			1.	5	
Linear travel for 1 motor shaft rev.	[mm]	3.33	6.67	16.67	3.33	6.67	13.33	21.33	3.33	6.67	13.33	26.67
Max. force F _{max}	[N]	10000	8884	3676	20000	20000	18176	11488	40000	40000	40000	20471
Max. input torque T _{max}	[Nm]	7.5	12.4	12.4	15.4	28.0	48.1	48.1	30.3	55.6	106.2	106.3
Max. linear speed v _{max} [mm/s]	167	333	833	156	311	622	996	125	250	500	1000
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Ratio u	R2		2			2	2			2	2	
Linear travel for 1 motor shaft rev.	[mm]	2.5	5	12.5	2.5	5	10	16	2.5	5	10	20
Max. force F _{max}	[N]	10000	9710	4018	20000	20000	19242	12161	40000	40000	37024	18932
Max. input torque T _{max}	[Nm]	5.8	10.3	10.3	11.9	21.4	38.5	38.5	23.4	42.3	74.5	74.5
Max. linear speed v _{max} [mm/s]	125	250	625	117	233	467	747	94	188	375	750
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Ratio u	R3		3			3	3			3	3	
Linear travel for 1 motor shaft rev.	[mm]	1.67	3.33	8.33	1.67	3.33	6.67	10.67	1.67	3.33	6.67	13.33
Max. force F _{max}	[N]	10000	9349	3869	20000	20000	13574	8579	40000	40000	23371	11951
Max. input torque I max	[Nm]	4.1	6.9	6.9	8.5	14.8	18.9	18.9	16.4	29.0	32.8	32.8
Max. linear speed v _{max}	mm/s]	83	167	417	/8	156	311	498	63	125	250	500
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Ratio u	R4	1.05	4	0.05	1.05	2	1 -	0	1.05	2	+	10
Linear travel for 1 motor shaft rev.	[mm]	1.25	2.5	0.25	1.25	2.5	5	8	1.25	2.5	5	10
	[N]	10000	8968	3711	20000	1/689	9153	5/85	40000	30956	15838	8099
Wax. Input torque I max	[INM]	3.3	0.2 105	010	0./	10.3	10.3	10.3	12.9	17.9	17.9	17.9
Wax. Intear speed V _{max}	[[[[]]]]	2000	125	313 2000	50 2000	11/	233	3/3	4/	94	100	3/5
wax. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Total actuator efficiency η		0.78	0.81	0.84	0.76	0.80	0.83	0.84	0.76	0.80	0.82	0.84
Friction torque T_a (³)	[Nm]		0.75 (1.1)			1.5	(2.2)			2.5	(3.7)	
Weight of 100 mm stroke actuator (2)	[kg]		18			3	6			5	4	
Weight for each 100 mm extra-stroke	[kg]		1.8			2	.5			3.	2	

(1) - Ball screws with accuracy grade IT 3 or IT 5 available on demand
(2) - Weight of the actuator without fixing accessories
(3) - The value in brackets refers to the version with additional output shaft (see chap. 3.4)

2 / ACTUATORS HSA SERIES

SIZE		HSA 100			HSA 150				HSA 200			
Push rod diameter	[mm]		Ø80		Ø90				Ø115			
Outer tube diameter	[mm]		Ø155		Ø195			Ø244.5				
Front attachment diameter	[mm]		Ø40		Ø45			Ø60				
Rear attachment diameter	[mm]		Ø40		Ø45			Ø60				
Attachment for IEC standard motor (flange and hollow shaft)		90B5 110-112B5 100-112B14			100-112B5 132B5 - 132B14			132B5 160B5				
Max static load	[N]		60 000			100	000			150	000	
Ball screw BS		BS1	BS2	BS3	BS1	BS2	BS3	BS4	BS1	BS2	BS3	BS4
Diameter × lead $d_0 \times P_h$	[mm]	50X10	50X20	50X40	63X10	63X20	63X30	63X40	80x10	80x16	80x20	80x40
Ball diameter D_w	[mm]	Ø7.144	Ø7.144	Ø7.144	Ø7.144	Ø9.525	Ø9.525	Ø9.525	Ø7.144	Ø9.525	Ø12.7	Ø12.7
Accuracy grade (1)		п	7	IT5		IT	5			IT	5	
N° of circuits		5	4	2	6	4	3	2	6	5	4	2
N° of starts		1	1	1	1	1	1	1	1	1	1	1
Dynamic load C_a	[N]	69900	57300	32900	102900	101100	80900	54500	115900	141000	192400	104700
Static load C _{0a}	[N]	166100	132100	68100	291300	234800	183600	115000	384500	395000	488100	241800
Ratio u	R1		1			1				1		
Linear travel for 1 motor shaft rev.	[mm]	10	20	40	10	20	30	40	10	16	20	40
Max. force F _{max}	[N]	60000	60000	32001	100000	100000	86011	65241	150000	150000	150000	117858
Max. input torque T _{max}	[Nm]	125.2	239.0	246.4	212.5	401.8	505.6	505.6	326.2	494.3	602.3	911.8
Max. linear speed v _{max}	[mm/s]	300	600	1200	238	475	713	950	188	300	375	750
Max. rotational speed n _{max}	[rpm]	1800	1800	1800	1425	1425	1425	1425	1125	1125	1125	1125
Ratio u	R1.5		1.5			1.	5			1.	5	
Linear travel for 1 motor shaft rev.	[mm]	6.67	13.33	26.67	6.67	13.33	20	26.67	6.67	10.67	13.33	26.67
Max. force F _{max}	[N]	60000	58870	30450	100000	100000	84177	63850	150000	150000	150000	116896
Max. input torque T _{max}	[Nm]	84.5	157.4	157.4	142.9	269.1	331.2	331.2	219.2	331.3	403.3	604.7
Max. linear speed v _{max}	[mm/s]	200	400	800	158	317	475	633	125	200	250	500
Max. rotational speed n _{max}	[rpm]	2700	2700	2700	2130	2130	2130	2130	1680	1680	1680	1680
Ratio u	R2		2			2	2	I		2	2	
Linear travel for 1 motor shaft rev.	[mm]	5	10	20	5	10	15	20	5	8	10	20
Max. force F _{max}	[N]	60000	58819	30423	100000	100000	79841	60561	150000	150000	150000	111917
Max. input torque T _{max}	[Nm]	64.1	118.7	118.7	108.2	202.8	236.7	236.7	165.7	249.8	303.8	435.7
Max. linear speed v _{max}	[mm/s]	150	300	600	119	238	356	475	94	150	188	375
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	2850	2850	2850	2850	2250	2250	2250	2250
Ratio u	R3		3			3	3			3	3	
Linear travel for 1 motor shaft rev.	[mm]	3.33	6.67	13.33	3.33	6.67	10	13.33	3.33	5.33	6.67	13.33
Max. force F _{max}	[N]	60000	46287	23942	100000	82540	56307	42710	150000	150000	150000	90412
Max. input torque 1 _{max}	[Nm]	43.7	63.7	63.7	73.4	113.3	113.3	113.3	112.3	168.3	204.3	237.1
Max. linear speed V _{max}	[mm/s]	100	200	400	79	158	238	317	63	100	125	250
Max. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Ratio u	K4	0.5	4	10	0.5	5	+	10	0.5	4	+	10
Linear travel for 1 motor shaft rev.	[mm]	2.5	5	17510	2.5	5	6.7	10	2.5	4	5	10
Nax. input targue T	[N]		33858	1/013	100000 FC 0	08293	39/00	30103	00000	100000	129351	104.0
Max linear anged if	[INM]	33.0 75	30.3 1E0	30.3 200	0.0C	01.0 110	01.0 170	0.10 000	00.0 47	127.5 7E	134.0	134.0
Iviax. Illear speed v _{max}	[[]][//S]	2000	000	3000	2000	119	0000	238	4/	<i>1</i> ۵	94	100
iviax. rotational speed n _{max}	[rpm]	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
Total actuator efficiency η		0.78	0.81	0.84	0.76	0.80	0.82	0.83	0.74	0.78	0.80	0.83
Friction torque T_a (³)	[Nm]		3 (4.5)			3.8	(5.7)			5.3	(7.9)	
Weight of 100 mm stroke actuator (²)	[kg]		104			18	32			32	28	
Weight for each 100 mm extra-stroke	[kg]		5.7			9.	2			14	.2	

(1) - Ball screws with accuracy grade IT 3 or IT 5 available on demand
(2) - Weight of the actuator without fixing accessories
(3) - The value in brackets refers to the version with additional output shaft (see chap. 3.4)

2.2 / Dimensions **HSA** Series

2 / ACTUATORS **HSA** SERIES

SIZE	HSA 10	HSA 25	HSA 50	HSA 100	HSA 150	HSA 200
BS	BS 25 x Ph	BS 32 x Ph	BS 40 x Ph	BS 50 x Ph	BS 63 x Ph	BS 80 x Ph
ПC	86	110	134	166	200	250
Α	127	164	201	231	271	310
В	61	77	93	115	146	169
Ø D1	35	50	60	80	90	115
Ø D2	90	105	120	155	195	244.5
F	25	30	30	35	35	43
G	24	40	50	60	70	90
ØP	96	110	125	164	200	250
Q	18	22	26	32	46	44
R1	28	45	50	60	70	80
S	500	629	746	776	867	1005
Т	447	585	702	732	823	956
Øg	20	30	35	40	45	60
Øg1	20	30	35	40	45	60
r1	32	53	65	68	75	75
Standard head	d BA					
Øi	M20x1.5	M30x2	M36x2	M42x2	M45x3	M100x3
I	30	48	54	65	65	100
Ball joint TS						
Ø d2	50	70	80	90	102	135
р	50	65	86	85	98	135
p1	75	100	126	130	149	202.5
s2	25	37	43	49	32	44
s3	18.5	25	28	33	27	38
Rear bracket	SP					
а	85	140	180	210	-	-
b	55	105	120	122	-	-
С	110	180	223.5	274.2	-	-
е	81	135	160	180	-	-
h	58	100	120	130	-	-
Øn	-	-	30	36	-	-
Øo	11	13	17	21	-	-
S	15	20	28	35	-	-
t	15	30	30	32	-	-

3 / Construction features

3.1 / Mounting attachments orientation

3.2 / Kinematic scheme

3.3 / Input shaft

Flange and hollow shaft for motor coupling	— KI
Ordering code: MF (IEC)	

SIZE	Motor attachment IEC	ØD1	ØDf1	ØDf2	ØDf3	L1	L11	h1	k1	S
	IEC 71 B5	14	160	130	110	30	90	M8	5×5	13
HSA 10	IEC 80 B5	19	200	165	130	40	100	M10	6 × 6	13
	IEC 80 B14	19	120	100	80	40	100	Ø7	6 × 6	13
	IEC 80 B5	19	200	165	130	40	105	M10	6 × 6	13
	IEC 80 B14	19	120	100	80	40	105	Ø7	6×6	13
ПЗА 23	IEC 90 B5	24	200	165	130	50	115	M10	8 × 7	13
	IEC 90 B14	24	140	115	95	50	115	Ø9	8 × 7	13
	IEC 90 B5	24	200	165	130	50	160	M10	8×7	15
HSA 50	IEC 100-112 B5	28	250	215	180	60	160	M12	8 × 7	15
	IEC 100-112 B14	28	160	130	110	60	160	Ø9	8×7	15
	IEC 90 B5	24	200	165	130	50	160	M10	8×7	15
HSA 100	IEC 100-112 B5	28	250	215	180	60	160	M12	8 × 7	15
	IEC 100-112 B14	28	160	130	110	60	160	Ø9	8×7	15
	IEC 100-112 B5	28	250	215	180	60	185	M12	8×7	23
HSA 150	IEC 132 B5	38	300	265	230	80	200	M12	10 × 8	23
	IEC 132 B14	38	200	165	130	80	200	Ø11	10 × 8	23
	IEC 132 B5	38	300	265	230	80	250	M12	10 × 8	25
113A 200	IEC 160 B5	42	250	300	250	110	250	M16	12 × 8	25

Dimensions in mm

3.3 / Input shaft

	k1 () () () () () () () () () ()	
Solid shaft with key, standard diameter Ordering code: S		

SIZE	ØD1	L1	L11	ØDc	h1	k1	S
HSA 10	16	30	116	84	M6 depth 12	5×5×25	10
HSA 25	20	40	150	100	M8 depth 20	6×6×35	8
HSA 50	24	50	182	122	M8 depth 20	8×7×45	9
HSA 100	32	65	217	156	M10 depth 25	10×8×60	11
HSA 150	42	85	267	185	M10 depth 25	12×8×80	11
HSA 200	55	100	318	230	M12 depth 25	16×10×90	11

Dimensions in mm

3.3 / Input shaft

	k1 () () () () () () () () () ()	
Solid shaft with key, increased diameter		
Ordering code: R		

SIZE	ØD1	L1	L11	ØDc	h1	k1	S
HSA 10	24	50	136	84	M6 depth 12	8×7×40	10
HSA 25	26	55	165	100	M8 depth 20	8×7×45	8
HSA 50	32	65	197	122	M8 depth 20	10×8×55	9
HSA 100	45	90	242	156	M10 depth 25	14×9×80	11
HSA 150	55	110	292	185	M10 depth 25	16×10×100	11
HSA 200	70	140	358	230	M12 depth 25	20×12×120	11

Dimensions in mm

3.4 / Additional output shaft

HSA actuators can be equipped with one or more additional output shafts.

Available options are:

- Code S: solid shaft with key, standard diameter
- Code R: solid shaft with key, increased diameter

The position of the shafts refers to the main input shaft and is expressed as an angle with a positive counterclockwise direction and with the actuator seen from above (rod end side).

ATTENTION: The rotational speed of the additional output shaft is always equal to the rotational speed of the input shaft, regardless of the reduction ratio of the actuator.

(*) - Marked combinations not available with ratio R1.

3.5 / Mounting position

NOTE: in case of inclined or tilting mounting position, indicate the one among the positions shown that the closer it gets to working condition.

4 / Sizing and selection

4.1 / Input torque calculation

Input torque due to external forces T_e

 $T_e = \frac{(F_p + F_a + F_e) P_h}{2000 \pi \cdot u \cdot \eta} [\text{Nm}]$

F _p	= weight (if present)
F _a [N]	= friction force
F _e [N]	= other external forces
P _h [mm]	= thread helix lead of the ball screw
u	= ratio of the actuator
η	= total efficiency of the actuator

Total input torque T_M

 $T_M = T_e + T_a \; [\text{Nm}]$

*T*_{*a*} **[Nm]** = friction torque of the actuator

NOTE: the calculated value must not exceed the Max Input Torque limit T_{max} reported in the technical tables (see Chapter 2.1 / Technical data HSA Series)

4.2 / Ball screw sizing and service life

Ball screws life corresponds to the number of revolutions that the screw can perform with regard to its nut before any sign of fatigue appears on the material

$$L_{10} = \left(\frac{C_a}{F_m \cdot f_{sh}}\right)^3 \cdot \ 10^6 \text{ [rev]}$$

$$\begin{array}{ll} \textbf{C}_{a} \left[\textbf{N} \right] &= \text{ball screw dynamic load} \\ \textbf{F}_{m} \left[\textbf{N} \right] &= \text{equivalent dynamic load} \\ \textbf{f}_{sh} &= \text{shock factor} \\ & \textbf{f}_{sh} = \textbf{1} & \text{load without shocks} \\ & \textbf{1} < \textbf{f}_{sh} \leq \textbf{1.3} & \text{load with light shocks} \\ & \textbf{1.3} < \textbf{f}_{sh} \leq \textbf{1.8} & \text{load with medium shocks} \\ & \textbf{1.8} < \textbf{f}_{sh} \leq \textbf{3} & \text{load with heavy shocks} \\ \end{array}$$

The result of the calculation corresponds to the number of revolutions of the screw with regard to the nut, reached by the

The **equivalent dynamic load** (F_m) is defined as a hypothetical load concentric to the screw, axial only, with constant width and direction that, if applied, would have the same effects on the ball screw life as the real applied load.

$$F_m = \sqrt[3]{\sum_i F_i^3 \cdot \frac{v_i}{v_m} \cdot \frac{t_i}{t_{tot}}} [N]$$

= duration of the i-th phase of the cycle
= load applied during the i-th phase
= linear speed during the i-th phase
$$V_m = \sum_i v_i \cdot \frac{t_i}{t_{tot}} [mm/s] = \text{average speed}$$

The equivalent dynamic load F_m must be calculated as indicated above, where for each phase external loads,

= $\sum_i t_i$ [s] = total cycle time

The service life of ball screw expressed in hours (L_{10h}) is calculated as follows:

$$L_{10h} = \frac{L_{10} \cdot P_h}{3600 \cdot v_m}$$
 [hours]

of screw, nut and rolling elements.

The **nominal ball screw life** (L_{10}) is calculated with the following formula:

90 % of the ball screws, apparently identical, subject to the same load conditions, motion laws and environment conditions.

To determine it, the working cycle is divided in distinct and separate phases, each of them characterized by its load level, the specific rotating speed and the relevant time of load application.

mass loads (weight and inertial) and friction loads must be considered.

The service life of ball screw expressed in km of travel (L_{10km}) is calculated as follows:

$$L_{10km} = \left(\frac{C_a}{F_m \cdot f_{sh}}\right)^3 \cdot P_h \text{ [km]}$$

P_h [mm]

= thread helix lead

t_{tot}

BS1-BS2

1,000,000 L10km [km]

5000 h 10000 h 20000 h 50000 h

25000 Fm [N]

5000 h 10000 h 20000 h 50000 h

25000

- 5000 h - 10000 h - 20000 h - 50000 h

Fm [N]

25000 Fm [N]

BS3

10,000

10 1000

10000

30000 Fm [N]

4 / SIZING AND SELECTION - BALL SCREW SIZING AND SERVICE LIFE

4.3 / Push load limit

In case of push load (static or dynamic) applied on the actuator, the buckling resistance of the screw must be checked. The maximum compression load allowed on the actuator is determined by:

$$F_{max} = \frac{6437.5 \cdot \pi^3 \cdot (d_0 - D_w)^4}{(C + x)^2 \cdot sf} [\mathsf{N}]$$

 d_0 [mm] = ball screw nominal diameter D_w [mm] = balls diameter

C [mm] = linear travel (stroke)

x = calculation coefficient
 (see below table)
 sf = safety factor

SIZE	HSA 10 HSA 25		HSA 50 HSA 100		HSA 150 HSA 200		
Coefficient x	275	361	428	408	446	518	

NOTE: value resulting from calculation must not exceed the max force value as for technical data (see Chapter 2.1 / Technical data HSA Series).

4.4 / Critical speed limit

The rotating speed of the screw generates the rod linear movement. Therefore, the linear speed of the actuator, is limited by the following factors:

A - External factors (length, diameter and type of screw end supports).

B - Internal factors (balls material, geometry and material of all the recirculation elements).

Once the respective values have been established according to these two criteria, the lower of the two values is adopted as the maximum speed of the system.

A - Limits due to external factors

In order to ensure a proper working of the system and to prevent imbalances which could damage the ball screw, the rotating speed must not reach the critical level.

Therefore, also the linear speed must be limited to the critical value.

The critical speed depends on the screw diameter, the type of screw end support and the length of the free ball screw. The maximum permissible linear speed is calculated according to the following formula, which limits the rotation speed to a value equal to 80% of the critical speed:

$$v_{max} = 251 \cdot 10^4 \cdot \frac{d_0 - D_W}{(C + x)^2} \cdot P_h \text{ [mm/s]}$$

<i>d</i> ₀ [mm]	= ball screw nominal diameter
D _w [mm]	= balls diameter
$P_{h}^{"}$ [mm]	= thread helix lead
C [¨] [mm]	= linear travel (stroke)
x	= calculation coefficient (see below table)

SIZE	HSA 10	HSA 25	HSA 50	HSA 100	HSA 150	HSA 200
Coefficient x	275	361	428	408	446	518

B - Limits due to internal factors

Depending on balls and screw material, geometry and material of all the recirculation elements and screw diameter, there is a specific limit of the maximum rotating speed. The values related to each actuator model and size are stated in the specific performance tables (see chapter 2.1 / Technical data HSA Series).

5 / Limit sensors

Inductive proximity switches allow the stroke of an actuator to be limited, preventing it from reaching the internal mechanical stop and being damaged by it. If there are intermediate sensors, they allow to identify intermediate positions along the stroke of the actuator.

The inductive proximity switches are mounted directly on the protective tube in the required position.

- Their position is fixed (not adjustable)
- The reading positions of the two limit switch sensors are the extreme limit switch positions Lc and La (see chapter 2.2 - Dimensions HSA Series).
- FC 1 sensor for ACTUATOR RETRACTED position (Lc)
- FC 2 sensor for ACTUATOR EXTENDED position (La)

6 / Additional information

6.1 / Operating conditions

The normal operating conditions of the actuators are:

- Environment temperature +0°C ÷ +40°C
- Relative air humidity 5% ÷ 85% without condensation
- Duty cycle

up to 100%

6.2 / Relubrication and maintenance

Linear actuators HSA Series are **grease lubricated** and are supplied complete with lubricant.

The standard type of lubricants for gearbox and linear drive are suitable for the entire possible speed range of the actuators, with an ambient operating temperature of $(0 \div 40)^{\circ}$ C.

In case of operating temperature outside the standard range, please contact Servomech technical support to evaluate the possible use of a special lubricant.

The gearbox is lubricated for life.

The **linear drive must be periodically lubricated**: the lubrication interval, the quantity and type of lubricant are specified in detail in the For conditions of use different from normal operating conditions, please contact Servomech technical support for technical feasibility and to evaluate special configurations of the product.

use and maintenance manual supplied with the actuator.

The HSA series actuators have a **specific system** for lubricating the ball nut: to access the grease nipple located on the nut it is necessary to position the actuator at the maintenance position called LUB, which corresponds to the reading of one of the FCP limit switch sensors, to align the nut greaser with the access hole located on the external tube of the actuator.

At this point it is possible to remove the plug on the tube and place the specific greaser to grease the ball nut.

SIZE	GEAR BOX Lubricant	LINEAR DRIVE Lubricant	LUB Quote		
HSA 10	Grease (NLGI 00 DIN 51818): AGIP Grease SLL 00	Grease (NLGI 1 DIN 51818): LUBCON Thermoplex ALN 1001	Lc Quote (sensor reading FC1)		
HSA 25			Lc Quote (sensor reading FC1)		
HSA 50			Lc Quote (sensor reading FC1)		
HSA 100			Lc Quote (sensor reading FC1)		
HSA 150			Lc Quote (sensor reading FC1)		
HSA 200			La Quote (sensor reading FC2)		

6.3 / Product identification

Each SERVOMECH product is uniquely identified and supplied with an identification plate, shown in the figure below, which allows its identification and provides technical information on the product.

1) Product code: is an alphanumeric code stating the series, size, ratio, version and stroke limit device of the product. 2) Ratio: is the ratio of the worm gear. 3) Stroke length: is the stroke length in millimetres achievable by the product. is the linear speed in mm/sec for products supplied with an electric motor; 4) Linear speed: if the motor is not supplied, this field is blank. is the assembly date, expressed in week/year (ex.: 37/23 = week 37 5) Delivery date: / year 2023) which usually is also the delivery date; this date is considered as a reference for the duration of the guarantee. 6) Serial number: is the number referred to the unit and assures the exact identification of the product, even after long time; it must be given as reference when ordering spare parts for the unit.

6.4 / Delivery status of the product

The SERVOMECH linear actuators in standard execution are supplied in the set-up and finishing conditions shown below. For any special requests, please contact Servomech technical support.

- **Standard lubrication** according to the table (see chapter 6.2 / Relubrication and maintenance). In case of special requirements (e.g. ambient temperature, food industry, environment with the presence of ionizing radiation, an environment that requires the use of biodegradable lubricants) the most suitable lubricant for the specific environment is evaluated. For more information and for any specific request, please contact SERVOMECH technical support. On request, specific lubricants agreed with the customer can be applied.
- **Painting:** all the external surfaces of the actuator are painted with blue RAL 5010 paint. On request, painting can be carried out with paint and painting cycle agreed with the customer.
- **Shaft protection:** input shafts are protected with removable plastic covers or specific anti-rust products.

7 / Ordering code

/ Actuators **HSA** Series

HSA 25		R4	BS 2	STD	MF (IEC 90 B14)	SCHEME 10	-	VU	C200	TS	FCP		
	1	2	3	4	5	6	7	8	9	10	11		
1	Actuate	or size				HSA 10, HSA 25, HSA 50, HSA 100, HSA 150, HSA200							
2	Ratio					R1, R1.5, R2, R3, R4							
3	Ball sc	rew				BS1, BS2, BS3, BS4							
4	Mounti	ng attac	hments o	rientatior	1	STD, RPT							
5	Input s	haft / Ma	ain input			MF (IEC) , S, R							
6	Kinema	atic sche	me			SCHEME 10, SCH	HEME 20						
7	Additic	onal outp	ut shaft a	ınd positi	on	- (if not present) S 90, S 180, S 270, R 90, R 180, R 270							
8	Mounti	ng positi	on			U, D, VU, VD, HO							
9	Stroke					C							
10	Fixing	accessoi	ries			- (if not present) TS, SP							
11	Limit sensors					- (if not present) FCP							

Edition: PRT.01.006.ENG.01.2023-05

SERVOMECH SpA Via Calari, 1 • 40011 Anzola dell'Emilia (BO) • Italy • Tel. +39.051.6501711 • sales@servomech.com www.servomech.com

Made in Italy products 100% Made in

